振弦式傳感器是目前應力、應變測量中較為先進的傳感器之一。振弦式傳感器的輸出是頻率信號,信號處理過程中無須進行A/D及D/A轉換,因此,抗干擾能力強,信號傳輸距離遠,而且對傳輸電纜要求低。另外,振弦式傳感器還具有結構簡單、精度高、壽命長等特點, 因而一直受到工程界的關注。在工程應用中,振弦式傳感器可以埋入或焊接在被測試件上,基本不存在粘貼劑老化和脫落問題,具有很好的穩定性和重復性。對于微小的被測力變化可產生較大的頻率變化,具有很高的靈敏度。
隨著現代電子讀數儀技術、材料及生產工藝的發展,振弦式儀器技術也不斷得以完善,成為新一代工程儀器的潮流,被廣泛應用在建筑物基礎、大壩、橋梁、公路、核電站的水泥外殼等需要對受力、位移、微裂縫的測量中,還可以作為電子秤、皮帶秤、汽車秤等的關鍵傳感器。為了準確測量應力、應變的變化,除了要研究振弦式傳感器的材料特性外,還必須解決振弦傳感器的激振和測頻讀數技術。
傳統的間歇激振方法
為了測量出振弦的固有頻率,必須設法激發弦振動。激發弦振動的方式一般有2種:1、連續激振方式。這種方式又分為電流法和電磁法,在電流法中,振弦作為振蕩器的一部分,振弦中通過電流,所以必須考慮振弦與外殼的絕緣問題。若絕緣材料與振弦熱膨脹系數差別大,則易產生溫差,影響測量精度,連續激振容易使振弦疲勞。2、間歇激振方式。振弦上裝有一塊小純鐵片,旁邊放置電磁鐵,當電磁鐵線圈通入脈動電流i后,電磁鐵的磁性大大增強,從而吸住小鐵片(振弦);當線圈中無電流流過,電磁鐵就釋放振弦。如此循環激振,弦就產生振動。要維持弦持續振動,就應不斷地激發振弦。即電磁鐵每隔一定時間通過一次脈沖電流,使電磁鐵定時地吸引振弦,故須在電磁鐵的線圈通以一定周期的脈沖電流。當停止激振時,由于慣性的作用,振弦繼續做阻尼振動,電磁鐵線圈中產生感應電動勢,感應電動勢的頻率與弦的阻尼振動頻率相等。這樣可由輸出電勢的頻率測得振弦的固有振動頻率。
一般的單線圈振弦式傳感器的固有頻率范圍是400Hz~4500 Hz之間,其輸出頻率隨所受壓力的變化而變化。若掃頻信號的頻率范圍是400 Hz~4500 Hz,需要掃頻的時間長、激振效果差、可控性差。為了減少掃頻時間,提高測量速度,根據振弦傳感器的輸出頻率范圍設置不同的掃頻頻段。其方法是:由參數輸入電路輸入掃頻信號頻率的上限值fmax和下限值fmin,以及相鄰2個掃頻信號頻率的差值Δf,這些參數存儲在單片機的片內EEPROM中。這樣,輸出的掃頻信號很有針對性,輸出的激振頻率可控性好。這些正是該掃頻激振技術的突出優點。
對于多通道振弦傳感器的選擇和隔離是通過金屬化場效應管固態繼電器實現的。當選擇某一路傳感器時,其對應的MOSFET固態繼電器導通,而其他路的MOSFET固態繼電器截止。雖然其他路傳感器的激振線圈通過MOSFET接在恒流激振電路的輸出端,但是MOSFET截止時的漏電流極小,處于高阻態,因而不會對所選通路造成影響。另外,選通電路和恒流驅動電路是光隔離的,從而避免了選通電路和恒流驅動電路相互影響,進一步提高了掃頻激振電路的可靠性。
根據振弦式傳感器的特性,當激振信號太強時,振弦會產生倍頻振動,由于倍頻成分的不同,使得同一傳感器獲得的頻率不同。采用了恒流弱激振的方法,調整激振電流的大小,使其能可靠激振振弦傳感器的基頻,而又遠離倍頻。恒流激振的另一個優點是可以忽略傳感器引線電阻的影響。更多傳感器文章請見http://www.neohoutdoors.com